Derivation of force constants based on the electric field gradient

Show more

References

[1] Huber, K.P. and Herzberg, G. (1979) Molecular spectra and molecular structure I-IV, Van Nostrand Reinhold Company.

[2] Murrell, J.N. (1984) Molecular potential energy functions. John Wiley, New York.

[3] Neese, F., Wolf, A., Fleig, T., Reiher, M. and Hess, B.A. (2005) Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll-Hess transformations. Journal of Chemical Physics, 122, 204107-204117.

http://dx.doi.org/10.1063/1.1904589

[4] Visscher, L., Enevoldsen, T., Saue, T. and Oddershede, J. (1998) Molecular relativistic calculations of the electric field gradients at the nuclei in the hydrogen halides. Journal of Chemical Physics, 109, 9677-9684.

http://dx.doi.org/10.1063/1.477637

[5] Mastalerz, R., Barone, G., Lindh, R. and Reiher, M. (2007) Analytic high-order Douglas-Kroll-Hess electric field gradients. Journal of Chemical Physics, 127, 074105-047117.

http://dx.doi.org/10.1063/1.2761880

[6] Luding, W. and Falter, C. (1996) Symmetries in physics. Springer-Verlag Heidelberg, Berlin.

[7] Tinkham, M. (1964) Group theory and quantum mechanics. McGraw-Hill, New York.

[8] Saue, T. and Jensen, H.J.A. (1999) Quaternion symmetry in relativistic molecular calculations. Journal of Chemical Physics, 111, 6211-6222.

http://dx.doi.org/10.1063/1.479958

[9] Saue, T. and Jensen, H.J.A. (2003) Linear response at the 4-components relativistic level. Journal of Chemical Physics, 118, 522-536.

[10] Zhu, Z.H. (1996, 2007) Atomic and molecular reaction statics. Science Press, Beijing.

[11] Zhu, Z.H. (2007) The atomic and molecular reaction statics. Science in China Series G: Physics Mechanics and Astronomy, 50, 581-590.

http://dx.doi.org/10.1007/s11433-007-0054-6

[12] Charlie, H. (1976) Introduction to mathematical physics. Prentice Hall, Inc., Engleewood Cliffs.

[13] Zhu, Z.H., Meng, D.Q., Tang, Y.J. and Wan, M.J. (2012) Electric properties of molecules (HX, X = F, Cl, Br) based on the full relativistic theory. Science in China Series G: Physics Mechanics and Astronomy, 42, 392-399.